If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-12b+6=0
a = 1; b = -12; c = +6;
Δ = b2-4ac
Δ = -122-4·1·6
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{30}}{2*1}=\frac{12-2\sqrt{30}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{30}}{2*1}=\frac{12+2\sqrt{30}}{2} $
| 12c+14=5c+6+3c | | 2(y-4)-6y=-36 | | 2(6c-7)=5c+6+3c | | 5+4(-6v+3)=209 | | q+45=76 | | x-46=23 | | 441=1/27m | | 9/33=6/y | | 4x-8+5x=2x+48 | | a-27=54 | | 16=6m-4+2 | | 30=7m+2 | | 4(x-5)+5(x+1)=12 | | 8=5y+2 | | 11^-3x=5^x+6 | | 81=πr | | 4n-7=6n-20 | | 32=8^2/r | | 0.25x-4=25.75 | | 4(x+1)=6(x-3)+8 | | 7x-15x+16=-32 | | 28=2x+56 | | 4(x+1)=6(x-3)+7 | | 46=2πr | | 32=16-d | | 9x+24=12x+1 | | 11=u+7+9 | | (2x-7)*(4x+3)=112 | | |x+4|=20 | | 4(x-8)=64 | | 8n+7-7n+9= | | 3x-4(x-5)=24 |